Computing and fitting SSNMR powder patterns with the arithmetic-geometric mean and edge detection
نویسندگان
چکیده
منابع مشابه
Generalizing the Arithmetic Geometric Mean
The paper discusses the asymptotic behavior of generalizations of the Gauss’s arithmetic-geometric mean, associated with the names Meissel (1875) and Borchardt (1876). The "hapless computer experiment" in the title refers to the fact that the author at an earlier stage thought that one had genuine asymptotic formulae but it is now shown that in general "fluctuations" are present. However, no ve...
متن کاملthe past hospitalization and its association with suicide attempts and ideation in patients with mdd and comparison with bmd (depressed type) group
چکیده ندارد.
The second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملAn Arithmetic and Geometric Mean Invariant
A positive real interval, [a, b] can be partitioned into sub-intervals such that sub-interval widths divided by sub-interval ”‘average”’ values remains constant. That both Arithmetic Mean and Geometric Mean ”‘average”’ values produce constant ratios for the same log scale is the stated invariance proved in this short note. The continuous analog is briefly considered and shown to have similar pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Concepts in Magnetic Resonance Part A
سال: 2007
ISSN: 1546-6086,1552-5023
DOI: 10.1002/cmr.a.20073